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Abstract

This paper presents the use of a scanning laser vibrometer and a signal decomposition method to
characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser
vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic
excitation. Velocity profiles at different times are constructed using the measured velocities, and then each
velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting
method. From the variations of the obtained modal velocities with time we search for possible non-linear
phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second,
third, and fourth natural frequencies are examined in detail. Influences of the fixture mass, gravity, mass
centers of mode shapes, and non-linearities are evaluated. Geometrically exact equations governing the
planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the
multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal
resonances, energy transfer from high-frequency modes to the first mode, and amplitude- and phase-
modulation among several modes. Moreover, the existence of non-linear normal modes is found to be
questionable.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Because the cargo space of a launch vehicle is always limited, large space structures (e.g., solar
collectors, dish antennas, radiators, sun shields, habitats, radio-frequency structures, optical
communication systems, radars, lightweight radiometers, and telescopes) must be designed to be
stowed during launch and deployed once on orbit. Moreover, because the launch expenditure of a
NASA space mission always constitutes a significant fraction of the total cost, inexpensive launch
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vehicles with small payload masses are always desirable. Hence, instead of using previous electro-
mechanical types of deploying systems, recent efforts of NASA concentrate on the use of highly
flexible ultra-lightweight deployable/inflatable structures for space applications [1]. These recent
developments have stimulated extensive research into the mechanics and dynamics of highly
flexible structures.
Highly flexible deployable/inflatable structures are made of thin-walled structures and

membranes. Because these structures usually have small material damping and there is no
environmental damping in space, maneuver often leads to destructive large vibrations, which
affect the operational accuracy, increase the operation expense, and reduce the life of structures.
Because highly flexible structures can undergo large displacements and rotations without
exceeding their elastic limits, geometrically exact modelling and accurate computational methods
are needed in order to understand the behaviors of such structures, to evaluate their actual load
carrying capacity, and to determine an efficient control method [1–3].
Non-linear models are required in analyzing actual flexible structures, such as helicopter rotor

blades, wind turbine blades, and most space and aerospace structures. A linear static model of a
structure can predict the onset of static bifurcation (buckling) but cannot predict post-buckling
displacements. In a pseudo-non-linear model, the static behavior is described by a non-linear
model, but the dynamic behavior is described by a linear model. The non-linear static model is
used to predict the static equilibrium configuration after buckling, and the linear dynamic model
describes vibrations around the static equilibrium position and is used to perform dynamic
stability analysis and to predict the onset of dynamic bifurcation. However, a linear dynamic
model cannot predict limit cycles or chaotic attractors, which occur after dynamic bifurcation.
Hence, a geometrically exact (or fully non-linear) structural model that can describe large static
and dynamic deformations is required for the study of highly flexible structures.
Software developed for the design and analysis of highly flexible structures needs to be

experimentally verified for its applicability and accuracy. Geometrically exact modelling, analysis,
and experimental verification of large static deformations of highly flexible structures have been
demonstrated by many researchers [4–6]. However, obtaining accurate large dynamic deforma-
tions of highly flexible structures is still a very challenging task, and experimental verification of
large dynamic deformations is even more difficult. To solve non-linear dynamic problems of
actual structures without using the finite-element method is almost impossible. Although the
finite-element method is still the most popular method for analyzing complex structures because
of its systematic approach of treating different structural elements and system boundaries, finite-
element solutions are always approximate answers because of the use of polynomial shape
functions and variational formulations. Moreover, using different stress and strain measures,
different methods of meshing the geometric domain, different iteration methods in solving non-
linear algebra equations, and even different methods of tracing equilibrium paths can result in
different solution errors in finite-element analyses. Hence, experimental verification of non-linear
dynamic responses from finite element analyses is important in order to assure the performance of
a non-linear finite-element code. Unfortunately, large-amplitude vibration testing itself is very
challenging. Because of significant mass and stiffness, wiring, conductivity requirement, and/or
limited measurement range, conventional sensors (such as accelerometers, strain gauges, and
displacement sensors using eddy current) are not suitable for measuring large dynamic responses
of highly flexible structures.
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In this work a scanning laser vibrometer is used to provide non-contact measurements of
velocities of many points on a cantilevered beam, and a signal decomposition method is developed
to process these velocities to reveal non-linear characteristics, such as superharmonic and
subharmonic external resonances, internal resonances, amplitude- and phase-modulated motions,
and energy transfer from high- to low-frequency modes. Moreover, large-amplitude operational
deflection shapes are obtained by solving geometrically exact equations of motion using the
multiple shooting method, and the concept of non-linear normal modes is examined.

2. Experimental set-up

Fig. 1 shows the set-up of a Polytec PSV-200 scanning laser vibrometer for measuring velocities
of many equally spaced points on a beam, where the Ling Dynamics LDS V408 shaker has a
maximum output force of 196 N and can provide 5–9000 Hz excitations. The PSV-200 scanning
laser vibrometer can provide non-contact (measuring velocities of a dynamic system by checking
the frequency shift of a back-scattered laser beam), remote (up to 30 m away), large-area scanning
(up to 40� � 40�), dense (up to 512� 512 points), high-frequency bandwidth ð0:2 Hz–20 MHzÞ;
and accurate (a velocity resolution of 0:1 mm=s) measurements. The vibrometer system comprises
an OFV-055 optical scan head, an OFV-3001-S controller, a video control box, and a Pentium-II
400 MHz computer system. The LDS PA500L power amplifier magnifies the AC voltage from the
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DSC4-CE shaker controller and sends it to the shaker to excite the structure. The PCB J353B03
shear ICP accelerometer feeds back the base acceleration to the DSC4-CE, and the DSC4-CE
modifies the AC voltage sent to the LDS PA500L to keep the base motion harmonic. The
scanning head launches a probe beam to the structure’s surface and collects the back-scattered
light signal as well. The OFV-3001-S vibrometer controller provides power for the scanning head,
controls the rotation of the two mirrors in the OFV-055 scan head and the scanning of the laser
beam, and processes the interferometry created by the back-scattered laser beam and the reference
laser beam in the OFV-303 sensor head. The output voltage from the DSC4-CE is also taken as
the input signal to the structure by Channel A of the OFV-3001-S vibrometer controller and is
also used as the signal for triggering data acquisition by the computer. The OFV-3001-S controller
includes two independently programmable low-pass filters for filtering the signals from the DSC4-
CE and the OFV-303 sensor head, respectively. After filtering, these two signals are sent from
Channels A and B of the vibrometer controller to the 400 MHz computer system, which is
operated by Windows NT and processes the measured data. The PSV software in the computer
system controls the entire measuring system, which includes the high-speed FFT processor,
analog-to-digital converters, laser focus and position, vibrometer electronics, and a live video
system. The video control box controls the swiveling and tilting of the OFV-055 scan head and the
focusing of the video camera in the OFV-055 scan head. A standardized composite video signal
from the camera is passed via a BNC connection on the video control box to the video input of the
computer system. The exact area to be scanned can be drawn with reference to the video image of
the structure on the monitor.
When using the laser vibrometer to detect the surface velocity of a structure, bright spots in the

speckle pattern of the laser light back-scattered from the surface will randomly fall on the optical
sensor. This inherent fluctuation in the light intensity at the optical sensor is called speckle noise,
and it depends on the ratio of the laser wavelength to the structural surface roughness. The PSV-
200 laser vibrometer employs an analog phase lock loop (PLL) circuit to demodulate the FM-
signal. It is often that the speckle noise causes the PLL to lose its locking state so as to yield noise
signals with large amplitudes. Speckle noise amplitudes from 2 to 10 times the expected velocity
amplitudes may occur and the input to the A/D converter will become overloaded. Speckle noise
occurs more often when the surface velocity is of low amplitude, the laser beam is improperly
focused, the surface is of poor reflective nature, or the laser beam is off the structure’s normal
direction by a large angle. It will strongly limit the system performance in poor signal-to-noise
ratio, short stand-off distance, and high velocity signals. To reduce spectral noise and reflection
when the laser beam was not perpendicular to the structure due to dynamic deflection, a thin layer
of retro-reflective tape was adhered to the beam shown in Fig. 1.
In the experiments we first performed an ‘‘FFT’’ acquisition to obtain frequency response

functions (FRFs) using a small periodic chirp base-excitation, and then we obtained linear natural
frequencies from the averaged FRF. After that we performed single-frequency large-amplitude
base-excitations and examined non-linear vibration characteristics of the beam.
Fig. 2 shows that the laser beam does not really shoot at the same point because of the axial

displacement u (due to the shortening effect) and the non-zero shooting angle y of the laser beam.
To reduce this effect we set the OFV-055 scan head 2:4 m away from the beam to make yo6�:
Moreover, because this effect is especially significant if it is a large-amplitude first-mode vibration,
and because the beam’s first natural frequency (about 1:5 Hz) is much lower than the minimum
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frequency limit ð5 HzÞ of the shaker, large-amplitude first-mode vibrations are not examined in
this study. For all the cases studied, the influence of u is shown to be negligible by experimental
results presented later in Section 5.

3. Governing equations

3.1. Large-amplitude vibration

To describe large deformations of a beam, two co-ordinate systems are needed; the system xyz
shown in Fig. 1 describes the undeformed system configuration and the system xZz describes the
deformed system configuration. The system xyz is an inertial orthogonal rectilinear co-ordinate
system in which the axis x is the reference line formed by connecting the reference points of all
cross-sections of the undeformed beam; and the system xZz is a local orthogonal curvilinear co-
ordinate system in which the axis x represents the deformed reference line and the axes Z and z
represent the deformed configurations of the axes y and z in the absence of out-of-plane warpings.
The unit vectors along the axes x; z; x; and z will be denoted by ix; iz; i1; and i3; respectively. u
and w represent the displacement components of the reference point on the observed cross-section
with respect to the axes x and z; respectively.
The fully non-linear equations governing the two-dimensional motion of a highly flexible beam

can be derived by using Jaumann stress and strain measures and an exact co-ordinate
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transformation to be [7]

F 0
1 ¼ � r2F3 � T11q1 � T13q3 þ T11m .u þ T13m .w;

F 0
3 ¼ r2F1 þ T13q1 � T11q3 � T13m .u þ T11m .w;

M 0
2 ¼ð1þ eÞF3; T 0

11 ¼ ðr2 � k2ÞT13; T 0
13 ¼ �ðr2 � k2ÞT11;

u0 ¼ � 1� wk2 þ ð1þ eÞT11; w0 ¼ uk2 þ ð1þ eÞT13; ð1Þ

where ð Þ0 	 @ð Þ=@x; ’ð Þ 	 @ð Þ=@t; F1 is the internal force along x; F3 is the internal force along
z; M2 is the internal bending moment along Z; i1 ¼ T11ix þ T13iz ð¼ ð1þ u0 þ wk2Þ=ð1þ eÞix þ
ðw0 � uk2Þ=ð1þ eÞizÞ; T211 þ T213 ¼ 1; m is the mass per unit length, e is the axial strain on and
along the x axis, r2 is the normalized bending curvature along Z; q1 and q3 are the distributed
external loads along x and z; respectively, and k2 is the undeformed bending curvature along y: k2
can be used to describe the geometry of an initially crooked beam. For an initially straight beam
(such as the beam studied in this paper), k2 ¼ 0: Moreover, the constitutive equations are

r2 ¼
M2

EI
þ k2; e ¼

F1

EA
; ð2Þ

where I is the area moment of inertia with respect to the Z axis, E is Young’s modulus, and A is
the cross-sectional area.
Because the base (i.e., the fixture) in Fig. 1 is confined to move horizontally, we have

wðx; tÞ ¼ bðtÞ þ %wðx; tÞ; ð3Þ

where bðtÞ denotes the base motion and %w is the relative displacement of the beam with respect to
the base. If wð¼ bðtÞ þ %wðx; tÞÞ is assumed to be harmonic when bðtÞ is harmonic and m .u is
assumed to be negligible, one can transform the non-linear dynamic problem in Eq. (1) into a
quasi-static one by using

k2 ¼ 0; q3 ¼ 0; q1 ¼ �mg; .w ¼ �O2ðb þ %wÞ;

w0 ¼ %w
0; w00 ¼ %w

00; w000 ¼ %w
000; wiv ¼ %w

iv; ð4Þ

where g is the gravity and O is the excitation frequency. The problem is equivalent to a fixed–free
vertical beam being loaded with a constant, distributed transverse load mbO2; a parametric load
m %wO2; and the structural weight. The boundary conditions are

T11 ¼ 1; T13 ¼ u ¼ %w ¼ 0 at x ¼ 0; F1 ¼ F3 ¼ M2 ¼ 0 at x ¼ L; ð5Þ

where L is the beam length. Eqs. (1), (4), and (5) can be solved for %w using the multiple shooting
method [5,8]. The so-obtained b þ %w is called the operational deflection shape at the specific
excitation frequency, and it can be used to examine the concept of non-linear normal modes. If the

%w is assumed to be the shape of a non-linear normal mode, the corresponding velocity profile is
Oðb þ %wÞ:

3.2. Weakly non-linear vibration

If the vibration is weakly non-linear and the beam is assumed to be inextensible (i.e., e ¼ 0), one
can perform Taylor’s expansion to expand the longitudinal displacement u and the bending
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curvature r2 up to cubic non-linearity as [9]

u ¼ �
1

2

Z x

0

w02 dx; ð6Þ

r2 ¼ w00ð1þ 1
2w

02Þ: ð7Þ

And, the equation of motion is given by [9]

m .w ¼ �EIðw000 þ w0w002 þ w000w02Þ0 þ ðw0
Z x

L

m .u dsÞ0 þ ½w00ðx � LÞ þ w0�mg: ð8Þ

Substituting .w ¼ �O2ðb þ %wÞ and w0 ¼ %w0 from Eq. (4) into Eq. (8), neglecting .u; and using the
boundary conditions

%w ¼ %w
0 ¼ 0 at x ¼ 0; %w

00 ¼ %w
000 ¼ 0 at x ¼ L; ð9Þ

one can use the multiple shooting method to solve Eqs. (8) and (9) for operational deflection
shapes. One can also solve Eqs. (8) and (9) for asymptotic solutions using perturbation methods
[10]. However, a linear mode is included in a perturbation solution only if its natural frequency o
is commensurable with the excitation frequency O (i.e., external resonances), or o is
commensurable with the natural frequency of an excited mode (i.e., internal resonances). Because
there are only cubic non-linearities in Eq. (8), first-order perturbation solutions of Eq. (8) can only
predict 1:1 and 1:3 internal and external resonances. Moreover, the scaling parameter e used in a
perturbation method for ordering is usually a mystery, and it is difficult to quantify the applicable
parameter range of the perturbation solution obtained under a specific scaling. We will examine
the applicability of Eq. (8) to large-amplitude analyses.

4. Response to harmonic excitations

We consider the upwardly cantilevered beam shown in Fig. 1, which is a 479:0� 50:8�
0:45 mm titanium alloy beam having a mass density 4430 kg=m3; Young’s modulus 127 GPa; and
the Poisson ratio 0.36. Moreover, the effective moving mass (including the armature and the
fixture base) of the shaker is given by the manufacturer to be 200 g; and the fixture weighs 768 g:
The free undamped linear vibration of a beam is governed by

m .w þ EIwiv ¼ 0: ð10Þ

Substituting Eq. (3) into Eq. (10) yields

m .%w þ EIwiv ¼ �m .bðtÞ: ð11Þ

If the excitation force on the movable part (including the effective moving mass of the shaker and
the fixture) of the excitation system is assumed to be a harmonic force F0 sinOt; the equation of
motion of the movable part is

F0 sinOt � EIw000ð0; tÞ ¼ M .bðtÞ; ð12Þ

where the mass Mð¼ 0:2þ 0:768 ¼ 0:968 KgÞ is the mass of the movable part. Hence, it follows
from Eqs. (11) and (12) that the equation governing the motion of the beam and the movable part
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is given by

m .%w þ c ’%w þ EIwiv ¼
m

M
½EIw000ð0; tÞ � F0 sinOt�; ð13Þ

where we added the damping term c ’%w and c is the damping coefficient. Because Eq. (13) is linear
and the excitation function is harmonic, the responses wðx; tÞ and %wðx; tÞ should be also harmonic.
If there are other harmonic components, they must be due to non-linearities.
One can see from Eq. (13) that, if M is too large, the maximum available force amplitude (i.e.,

F0m=M) becomes too small for exciting a large structure. On the other hand, if a small structure
(and hence a small EIw000ð0; tÞ) is to be tested, one should choose a large M and hence a large F0
can be used to make the EIw000ð0; tÞ relatively negligible. This is the reason we use a 768-g fixture in
this study of a small flexible beam. If the shaker controller DSC4-CE is used to monitor the base
motion and to accordingly change the input voltage to the shaker to make bðtÞ ¼ B0 sinOt; then
we have

m .%w þ c ’%w þ EIwiv ¼ mO2B0 sinOt: ð14Þ

The free undamped linear mode shapes fiðxÞ of a cantilevered beam can be obtained from
Eq. (10) to be

fiðxÞ ¼ cosh bix � cos bix þ
cos biL þ cosh biL

sin biL þ sinh biL
ðsin bix � sinh bixÞ: ð15Þ

For the first four modes, biL ¼ 1:875104; 4:694091; 7:854757; and 10:99554: Fig. 3 shows the
first four mode shapes. We note that the maximum displacement of each mode is 2 at x ¼ L: The
instant mass center of each mode can be calculated to be at ðx; zÞ ¼
ðL=2; 0:7830Þ; ðL=2; 0:4339Þ; ðL=2; 0:2544Þ; and ðL=2; 0:1819Þ: We note that the mass center gets
close to the equilibrium position ðz ¼ 0Þ when the mode number increases.
We note that, because of the lumped massM of the movable part and the distributed structural

weight mg; the actual natural frequencies and mode shapes may deviate from the ones shown in
Eq. (15). To include the actual influences of the movable mass and the structural weight we add

ARTICLE IN PRESS

Fig. 3. The first four linear mode shapes and their instantaneous mass centers.

P.F. Pai, S.-Y. Lee / Journal of Sound and Vibration 264 (2003) 657–687664



the influence of structural weight to Eq. (13) to obtain that [9]

m .%w þ c ’%w þ EIwiv ¼
m

M
½EIw000ð0; tÞ � F0 sinOt� þ ½w00ðx � LÞ þ w0�mg: ð16Þ

From the linear mode shapes and their instantaneous mass centers shown in Fig. 3, we know that
the gravity will slow down the restoration of bending if the beam is upward (Fig. 1), and the
gravity will accelerate the restoration of bending if the beam is downward. Hence, the natural
frequencies of the upward beam are expected to be less than those of the downward beam.
Because the instantaneous mass center of a high-frequency mode is close to the equilibrium
position, the influence of gravity on its natural frequency is expected to be small. If the mode
shapes are assumed to be the same as those in Eq. (15), one can substitute the mode shapes in
Eq. (15) into Eq. (16) (without F0 sinOt and c ’%w) and use the Galerkin method to estimate the
natural frequencies oi as

o2i ¼ b4i
EI

m
�

EI

M

f000
i ð0Þ

R L

0 fi dxR L

0 f2i dx
� g

R L

0 ½f
00
i ðx � LÞ þ f0�f dxR L

0 f2i dx
: ð17Þ

It can be shown that
R L

0 f2i dx ¼ L: If M-N and the gravity is neglected, the first four oið¼
b2i

ffiffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
Þ are obtained to be 1.6964, 10.6310, 29.7671, and 58:3316 Hz: If only the influence of

Mð¼ 0:968 kgÞ is considered, oi are obtained to be 1.7222, 10.6810, 29.8153, and 58:3800 Hz: One
can see that theM increases the natural frequencies by 1.5%, 0.5%, 0.2%, and 0.1%, respectively.
Hence, the influence of the moving part on the vibration characteristics is expected to be small. If
only the gravity is considered, oi of the upward beam are obtained to be 1.4365, 10.4181, 29.5491,
and 58:1026 Hz; and oi of the downward beam are obtained to be 1.9214, 10.8397, 29.9835, and
58:5598 Hz: One can see that the gravity changes the natural frequencies of the downward
(upward) beam by 13:3% ð�15:3%Þ; 2:5% ð�2:0%Þ; 0:7% ð�0:7%Þ; and 0:4% ð�0:4%Þ; respec-
tively. In other words, the gravity will increase the first four natural frequencies from the upward
beam to the downward beam by 28.6%, 4.5%, 1.4%, and 0.8%, respectively. Hence, the influence
of gravity is more significant than that of the moving part on the vibration characteristics of the
beam. Moreover, we note that both the moving mass and gravity do not have significant
influences on high-frequency modes.

5. Experimental and numerical results

We used a 0–200 Hz periodic chirp signal for excitation and the PSV-200 scanning laser
vibrometer to obtain the frequency response functions (FRFs) of 51 equally spaced points on the
beam shown in Fig. 1. The measurement time was about 50 min: Because 6400 FFT lines (i.e.,
only 200i=6400 Hz ði ¼ 1; 2;y; 6400Þ harmonics are included in the chirp signal, and the FRF
will be calculated only at these frequencies) were used in the measurement, the frequency
resolution is 0:03125 ð¼ 200=6400Þ Hz: Fig. 4 shows the averaged FRF of the 51 FRFs of the
upward beam. We note that the peaks in Fig. 4 are sharp and do not show the influence of
damping because the linear scale is used in order to show the first peak. The first six peaks in
Fig. 4 correspond to the first six natural frequencies shown in Table 1. From the averaged FRF of
the 51 FRFs of the downward beam, the first six natural frequencies were also obtained and
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shown in Table 1. It is obvious that, when the beam is put downward, the gravitational load on
the beam makes the beam stiffer and increases natural frequencies. We note that the experimental
percentage increases of the first four natural frequencies from the upward beam to the downward
beam are very close to the numerical predictions (28.6%, 4.5%, 1.4%, and 0.8%) obtained using
Eq. (17). However, gravity does not have significant influences on natural frequencies of higher
modes. One can see that the second, third, and fourth natural frequencies are close to 10, 30, and
60 Hz; respectively. Hence, cubic and quadratic non-linearities may cause 1:3 and/or 1:2 internal
resonances (i.e., 3oiEoj and/or 2oiEoj) among these three modes [10].
Then we performed time-domain acquisitions with the beam being excited at a chosen

frequency, and 1024 velocity samples at each of the 51 points on the beam and one point on the
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Fig. 4. The averaged frequency response function and the first six natural frequencies.

Table 1

Natural frequencies from the averaged FRF obtained using a periodic chirp excitation

o1 ðHzÞ o2 ðHzÞ o3 ðHzÞ o4 ðHzÞ o5 ðHzÞ o6 ðHzÞ

Upward 1.406 10.438 29.719 58.281 97.125 145.438

ðo3=3þ 0:532Þ ð3o2 � 1:595Þ ð6o2 � 4:347Þ
ðo4=6þ 0:725Þ ðo4=2þ 0:579Þ ð2o3 � 1:157Þ

Downward 1.875 10.875 30.156 58.750 97.469 145.875

ðo3=3þ 0:823Þ ð3o2 � 2:469Þ ð6o2 � 6:500Þ
ðo4=6þ 1:083Þ ðo4=2þ 0:781Þ ð2o3 � 1:562Þ

Increase 33.36 4.19 1.47 0.80 0.35 0.30

(%)
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fixture base were recorded using a sampling frequency of 512 Hz: If the beam vibration is periodic
and has a period T and the recording at each location is controlled by triggering to begin at nT (n
is an integer) after the beginning time of the previous recording, the velocity profile at t ¼ tk can
be obtained by connecting the measured velocities of the 51 locations at tk: To separate the
contribution of each linear mode from the velocity profile at t ¼ tk we assume

’wðx; tkÞ ¼ ’bðtkÞ þ
X4
i¼1

aiðtkÞfiðxÞ; ð18Þ

where ’b is the experimental base velocity and ai denotes the modal velocity of the ith linear mode.
To obtain the values of aiðtkÞ by least-squares fitting we define a spatial-domain error function Ex

as

Ex 	
X51
m¼1

½ ’wðxm; tkÞ � ’#wðxm; tkÞ�2; ð19Þ

where ’#w are experimental data. The equations for determining aiðtkÞ are given by

@Ex

@ai

¼
X51
m¼1

2½ ’wðxm; tkÞ � ’#wðxm; tkÞ�fiðxmÞ ¼ 0; i ¼ 1; 2; 3; 4: ð20Þ

The standard deviation SD of the fitted velocity profile at each instant can be calculated as

SD 	

ffiffiffiffiffiffi
Ex

N

r
; ð21Þ

where N denotes the number of measurement points, which is 51 in this study. Because the
scanning laser vibrometer uses the known excitation frequency and a trigger to determine the
beginning time for recording at each location on the beam, the recorded velocities of the 52
locations (including the point on the fixture) will be in phase if the velocities contain only
harmonics of the excitation frequency O and its integral multiples (i.e., nO). If the motion contains
non-periodic components or periodic components with frequencies different from nO; the
obtained velocity profiles may not be the actual ones because artificial phase differences may be
introduced by the data acquisition. However, one can check the velocities of the point at x ¼ xm

to see whether its curve-fitted velocities ’wðxm; tkÞ; k ¼ 1;y; 1024 in Eq. (18) match with its
experimental velocities ’#wðxm; tkÞ; and it can be quantified using the following time-domain error
function Et:

Et 	
X1024
k¼1

½ ’wðxm; tkÞ � ’#wðxm; tkÞ�2: ð22Þ

Fig. 5 shows the operational deflection shapes captured using a SONY DSCP1 digital camera
when the base was excited at the second, third, and fourth natural frequencies, respectively.
Figs. 6(a)–(d) show 50 (25 light lines and then 25 dark lines) consecutive experimental velocity
profiles of the vibration shown in Fig. 5(a), the velocity profiles curve-fitted using Eq. (18) and
numerical velocity profiles obtained using the multiple shooting method, the modal velocity ai;
and the fitting error, respectively. The roughness of experimental velocity profiles shown in
Fig. 6(a) is due to spectral noise caused by the small longitudinal displacement and rotation of the
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beam, and it is more serious when the deflection is large and hence the velocity is close to zero.
The DSC4-CE controller was set to control the base velocity amplitude to be 0:07 m=s and the
actual amplitude was 0:0723 m=s: This 3% error is typical for all the experiments reported in this
paper, and the controlled base motion was found to be pretty close to a harmonic curve. The
intersection of velocity profiles within the envelope in Fig. 6(b) indicates that the motion consists
of two or more modes. The two starred lines in Fig. 6(b) are obtained using the multiple shooting
method [5,8] to solve Eqs. (1), (4), and (5). Because no damping is included in Eq. (1), the
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Fig. 5. The operational deflection shape when the beam is subjected a harmonic base-excitation at: (a) O ¼ o2 ¼
10:438 Hz with ’bmax ¼ 0:0723 m=s; (b) O ¼ o3 ¼ 29:719 Hz with ’bmax ¼ 0:0884 m=s; and (c) O ¼ o4 ¼ 58:281 Hz with
’bmax ¼ 0:0422 m=s:
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predicted amplitude is larger than the actual one. Moreover, in order to prevent the laser beam
from missing the beam tip (see Point c in Fig. 2), the last measurement point was set a little bit
away from the beam tip and hence the theoretical node does not coincide with the experimental
one. We also used the multiple shooting method to solve Eqs. (8) and (9) for theoretical velocity
profiles, and the solutions are larger than those theoretical ones in Fig. 6(b) by 1.2% or less. In
other words, although the amplitude is rather large (see Fig. 5(a)), including non-linearities up to
cubic terms is accurate enough for this study. However, because Eq. (8) is not geometrically exact
and its solution converges slowly in the multiple shooting process, all the theoretical velocity
profiles presented were obtained using Eqs. (1)–(5). Fig. 6(c) shows that the velocity profiles
mainly consist of the first and second linear modes and the contributions of third and fourth linear
modes are negligible. Moreover, both non-trivial modes are almost harmonic, vibrate at the
excitation frequency, and have a constant phase difference a:
The fiðxÞ shown in Eq. (15) are called linear normal mode shapes because they are derived from

the linear governing Eq. (10) and because all points on the beam pass the equilibrium position
ð %wðx; tÞ ¼ 0Þ at the same time when the vibration is %wðx; tÞ ¼ fiðxÞ sinoit: The two starred lines
shown in Fig. 6(b) represent a non-linear normal mode shape because it is obtained by assuming

%wðx; tÞ ¼ FðxÞ sinOt in Eq. (4). If two (or more) arbitrary, linear normal modes vibrate at the
same frequency O with a constant phase difference a; they can be combined into one mode (in
order to reduce the number of modes and computation efforts) as

%w ¼ #f2ðxÞ sinOt þ #f1ðxÞ sinðOt þ aÞ ¼ FðxÞ sinðOt þ %aÞ;

#f1 	
a1max

O
f1; #f2 	

a2max

O
f2;

FðxÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#f22 þ 2 #f1 #f2 cos aþ #f21

q
; %a 	 tan�1

#f1 sin a
#f2 þ #f1 cos a

: ð23Þ

Eq. (23) shows that %a is a constant (i.e., zero) only if a ¼ 0� or 180�: If aa0� or 180�; %a is a
function of x and it is called a complex mode, i.e., they cannot be combined into a normal mode.
Because Fig. 6(c) shows that the phase difference a between a1ðtÞ and a2ðtÞ is not 0� or 180�; it is a
complex mode. Close examination of Fig. 6(a) also shows that the maximum velocity profile (i.e.,
minimum deflection) between the clamped end and the node does not occur when the velocity
profile between the node and the beam tip is maximum, and hence it is a complex mode. On the
other hand, using the multiple shooting solution %w obtained from Eqs. (1)–(5) to estimate the
maximum velocity profile as Oðb þ %wÞ implies the assumption that %a is constant and it is a normal
mode. This is another factor that causes the difference between the theoretical and experimental
maximum velocity profiles in Fig. 6(b). Fig. 6(d) shows that, when the velocity is zero (i.e.,
maximum deflection), the maximum curve fitting error occurs because of spectral noise. In
Fig. 6(d), Wm denotes the maximum value of ’#w:When the velocity is the maximum or minimum,
the error is the minimum because it has a large signal-to-noise ratio and the beam is almost flat.
Figs. 7(a)–(c) show 58 (29 light lines and then 29 dark lines) consecutive experimental velocity

profiles of the beam excited at 9:0 Hz; the curve-fitted velocity profiles, and the modal velocities ai;
respectively. Because the vibration amplitude in Fig. 7(b) is smaller than that in Fig. 6(b), the last
measurement point (Point c in Fig. 2) was set closer to the beam tip and hence the theoretical node
almost coincides with the experimental one. Because the first mode also vibrates at the excitation
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Fig. 6. 50 velocity profiles at consecutive time steps when O ¼ 10:438 Hz and ’bmax ¼ 0:0723 m=s: (a) experimental data,
(b) curve-fitted data and numerical prediction (stars), (c) modal velocities, and (d) standard deviation (SD) of the curve-

fitting.

P.F. Pai, S.-Y. Lee / Journal of Sound and Vibration 264 (2003) 657–687670



frequency and has a 180� phase with respect to the second mode shape, it is a non-linear normal
mode and the non-linear mode shape FðxÞ can be written as

FðxÞ ¼
a2max

O
f2ðxÞ �

a1max

O
f1ðxÞ: ð24Þ

Figs. 8(a)–(c) show 44 (22 light lines and then 22 dark lines) consecutive experimental velocity
profiles of the beam excited at 12:0 Hz; the curve-fitted velocity profiles, and the modal velocities
ai; respectively. The theoretical velocity profiles in Figs. 7(b) and 8(b) agree well with the
experimental ones because the excitation frequencies are away from the natural frequency and
hence damping does not have significant influences. Because the first mode also vibrates at the
excitation frequency and has a 0� phase with respect to the second mode, it is a non-linear normal
mode and the non-linear mode shape FðxÞ can be written as

FðxÞ ¼
a2max

O
f2ðxÞ þ

a1max

O
f1ðxÞ: ð25Þ

Figs. 6(c), 7(c), and 8(c) and Eqs. (23)–(25) show that, although the first two linear modes vibrate
at the excitation frequency, the phase difference between them varies with the excitation
frequency. Moreover, Figs. 6(b), 7(b), and 8(b) show that the theoretical non-linear mode shape
(i.e., ð ’w � ’bÞ=O) changes with the excitation frequency O: In other words, the first two linear
modes move independently and cannot be combined into one non-linear normal mode. Hence, the
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Fig. 6 (continued).
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Fig. 7. 58 velocity profiles at consecutive time steps when O ¼ 9 Hz and ’bmax ¼ 0:1399 m=s: (a) experimental data, (b)
curve-fitted data and numerical prediction (stars), and (c) modal velocities.
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Fig. 8. 44 velocity profiles at consecutive time steps when O ¼ 12 Hz and ’bmax ¼ 0:1952 m=s: (a) experimental data, (b)
curve-fitted data and numerical prediction (stars), and (c) modal velocities.
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Fig. 9. 52 velocity profiles at consecutive time steps when O ¼ 10 Hz and ’bmax ¼ 0:1528 m=s: (a) curve-fitted data and
numerical prediction (stars), and (b) modal velocities.
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Fig. 10. 20 velocity profiles at consecutive time steps when O ¼ 29:719 Hz and ’bmax ¼ 0:0884 m=s: (a) curve-fitted data
and (b) modal velocities.
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concept of using non-linear normal modes instead of linear modes to reduce the number of modes
required in analyzing non-linear structural dynamics is questionable.
Figs. 9(a) and (b) show 52 (26 light lines and then 26 dark lines) consecutive curve-fitted velocity

profiles of the beam excited at 10 Hz; and the modal velocities ai: Fig. 9(b) shows that the motion
consists of the first four modes. The first mode vibrates at 10 Hz and is due to forced vibration.
The third mode vibrates at 30 Hz and is caused by 1:3 external and/or internal resonances due to
cubic non-linearities. The fourth mode vibrates at 60 Hz and is caused by 1:2:3 and/or 1:6 external
and/or internal resonances.
Fig. 10 shows 20 (10 light lines and then 10 dark lines) consecutive curve-fitted velocity profiles

of the beam excited at the third natural frequency 29:719 Hz (i.e., Fig. 5(b)), and the modal
velocities ai: The multiple shooting method was not able to find a converged operational
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Fig. 11. 20 velocity profiles at consecutive time steps when O ¼ 29 Hz and ’bmax ¼ 0:1371 m=s: (a) curve-fitted data and
numerical prediction (stars), and (b) modal velocities.
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Fig. 12. 32 velocity profiles at consecutive time steps when O ¼ 32 Hz and ’bmax ¼ 0:3414 m=s: (a) experimental data
(1024 profiles), (b) curve-fitted data and numerical prediction (stars), (c) modal velocities, (d) time trace of the 51st

measurement point (at the beam tip), and (e) curve-fitted time trace of the 51st measurement point.
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deflection shape for this case. Fig. 10(b) shows that the motion consists of the first four modes.
The first three modes all vibrate at the excitation frequency and are due to forced vibration. The
fourth mode vibrates at 2o3 caused by 1:2 external and/or internal resonances due to quadratic
non-linearities. Quadratic non-linearities may be due to initial imperfection (i.e., k2a0) or the
beam being not really vertical. Fig. 10(b) also shows that every modal velocity arrives at zero at
different times and it is why the nodes in Figs. 5(b) and 10(a) are not clear. Fig. 11 shows 20 (10
light lines and then 10 dark lines) consecutive curve-fitted velocity profiles of the beam excited at
29 Hz; and the modal velocities ai: Fig. 11(b) shows that the motion consists of the first four
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Fig. 12 (continued).
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modes. The first two modes vibrate at the excitation frequency and have a 180� phase with respect
to the third mode. The fourth mode vibrates at 58 Hz and has zero velocity when the first three
modal velocities are close to zero.
Fig. 12(a) shows 1024 experimental velocity profiles of the beam excited at 32 Hz; and

Fig. 12(b) shows 32 consecutive curve-fitted velocity profiles. Fig. 12(c) shows that the motion
consists of the first four modes. The first two modes vibrate at the excitation frequency and have a
0� phase with respect to the third mode (i.e., the directly excited mode). The fourth mode vibrates
at 64 Hz and has zero velocity when the first three modal velocities are close to zero. Because the
sampling frequency ð512 HzÞ is 16 ð¼ 512=32Þ times the excitation frequency ð32 HzÞ in this case,
there should be only 16 different velocity profiles in Figs. 12(a) and (b) if the beam vibrates at
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Fig. 13. The operational deflection shapes captured at two different times when O ¼ 32 Hz and ’bmax ¼ 0:3414 m=s:
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32n Hz: Fig. 12(b) shows exactly 16 different curve-fitted velocity profiles although 32 consecutive
velocity profiles are plotted. However, the non-overlapping profiles shown in Fig. 12(a) and the
large fitting error (average SD=Wmax ¼ 4:5%; compared to 2.2% in Fig. 10 and 1.3% in Fig. 11)
indicate that there are harmonic components different from 32n Hz: Figs. 12(d) and (e) show the
experimental and curve-fitted time traces of the beam tip. It is apparent that the curve-fitting
averages out the 1:406 Hz ð¼ o1Þ harmonic and the time-domain error function Et (see Eq. (22))
of each measurement point is higher than that in Figs. 10 and 11. Fig. 13 shows that the beam
swung back and forth at 1:406 Hz: Again Figs. 10(b), 11(b), and 12(c) show that linear modes
cannot be combined into fewer non-linear normal modes and the existence of non-linear normal
modes is questionable.

ARTICLE IN PRESS

Fig. 14. 18 velocity profiles at consecutive time steps when O ¼ 58:281 Hz and ’bmax ¼ 0:0422 m=s: (a) curve-fitted data
and numerical prediction (stars), and (b) modal velocities.
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Figs. 14(a) and (b) show 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity
profiles of the beam excited at the fourth natural frequency 58:281 Hz (i.e., Fig. 5(c)), and the
modal velocities ai; respectively. Again the theoretical velocity profiles obtained using the multiple
shooting method are much larger than the actual ones because damping is not included in Eq. (1).
Fig. 14(b) shows that the fourth mode dominates the motion, and the first three modes all vibrate
at the excitation frequency and have a 90� phase with respect to the fourth mode. Figs. 15(a) and
(b) show 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity profiles of the
beam excited at 58 Hz; and the modal velocities ai; respectively. Fig. 15(b) shows that the fourth
mode dominates the motion, and the first three modes all vibrate at the excitation frequency and
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Fig. 15. 18 velocity profiles at consecutive time steps when O ¼ 58 Hz and ’bmax ¼ 0:072 m=s: (a) curve-fitted data and
numerical prediction (stars), and (b) modal velocities.
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Fig. 16. 18 velocity profiles at consecutive time steps when O ¼ 60 Hz and ’bmax ¼ 0:1256 m=s: (a) curve-fitted data and
numerical prediction (stars), and (b) modal velocities.
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Fig. 17. 18 velocity profiles at consecutive time steps when O ¼ 60 Hz and ’bmax ¼ 0:1395 m=s: (a) curve-fitted data and
numerical prediction (stars), and (b) modal velocities.
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have a 180� phase with respect to the fourth mode. Again Figs. 14(b) and 15(b) show that the
concept of non-linear normal modes is questionable.
Figs. 16(a) and (b) show 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity

profiles of the beam excited at 60 Hz; and the modal velocities ai; respectively. Fig. 16(b) shows
that the first mode motion consists of 60 and 1:406 Hz ð¼ o1Þ harmonics, and the second, third,
and fourth modes vibrate at 60 Hz but their amplitudes modulate at 1:406 Hz: Figs. 17(a) and (b)
shows 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity profiles of the beam
excited at 60 Hz with a base excitation larger than that in Fig. 16, and the modal velocities ai;
respectively. The three sets of velocity profiles are separated by 0:5p=o1; and they show the
influence of the first mode. Fig. 17(b) shows that the first mode motion consists of 60 and
1:406 Hz harmonics, the second and fourth modes vibrate at 60 Hz but their amplitudes modulate
at 1:406 Hz; and the third mode motion consists of 60 and 30 Hz harmonics with amplitudes
modulating at 1:406 Hz:
When the beam is set downward, its dynamic responses are similar to those of the upward beam

except that the resonance frequencies increase a little. Figs. 18(a) and (b) show 18 (9 light lines and
then 9 dark lines) consecutive curve-fitted velocity profiles of the beam excited at 60 Hz; and the
modal velocities ai; respectively. Fig. 18(b) shows that each of the four modes consists of 60 and
1:875 Hz ð¼ o1Þ harmonics.
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Fig. 17 (continued).
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Fig. 18. 18 velocity profiles at consecutive time steps when the beam is set downward, O ¼ 60 Hz; and
’bmax ¼ 0:1332 m=s: (a) curve-fitted data and numerical prediction (stars), and (b) modal velocities.
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The existence of the first mode vibrating at o1 in Figs. 12(d), 16(b), 17(b), and 18(b) is due to
the so-called energy transfer from a directly excited high-frequency mode to a very low-frequency
mode which is not directly or indirectly excited through internal or external resonances [11]. The
existence of 1:2 internal resonance in Figs. 9(b), 10(b), 11(b), 12(c), and 17(b) shows that Eq. (8)
cannot be used to predict the dynamics of this beam because Eq. (8) cannot account for quadratic
non-linearities due to initial imperfection. The k2 in Eq. (1) can be used to account for initial
imperfection, and the q3 can be used to account for part of the structural weight if the beam is not
vertical.

6. Concluding remarks

We presented a method for the characterization of non-linear structural dynamics using
structural velocities measured by a scanning laser vibrometer. Dynamics characterization of
structures using a shaker and a scanning laser vibrometer is examined in detail, and several factors
that may affect the characterization are discussed. Experimental results indicate that the use of
non-linear normal modes in analyzing structural dynamics is questionable. Moreover,
experimental results show the existence of 1:3, 1:2:3, 1:6, and 1:2 external/internal resonances,
amplitude-modulated motion, and energy transfer. This method is also valid for non-linear
dynamics characterization of two-dimensional structures.
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